Polygons



In this post, i will teach you how to calculate a topic in mathematics called POLYGON. It is well known that, a polygon is plane shape with three or more sides, in which none of intersects each other, but all form an enclosed geometric figure. A polygon is named according to the number of sides it has.



Classification Of Polygons
There are different types of polygon, and they are:

(a) Convex Polygon

(b) Re- entrant Polygon

(c) Regular  Polygon





(a) Convex Polygon: In this type of polygon, each interior angle is less than  180 degree.An example is hexagon.





(b) Re- entrant Polygon :A convex polygon is a type of polygon with one or more of its interior angles reflex,i.e it is greater than 180 degree.




(c) Regular  Polygon:A regular polygon is a type shape  in which all its sides and angles are equal.







Now, i will mention some eaxmples of polygon names, number sides and number of angles.




NAME            NUMBER OF SIDES         NUMBER OF TRIANGLES

Triange             3                          1


Quadrilateral       4                          2


Pentagon            5                          3


Hexagon             6                          4


Heptagon            7                          5



Octagon             8                          6


Nonagon             9                          7


Decagon             10                         8


Undecagon           11                         9


Dodecagon           12                         10


Tridecagon          13                         11


etc









In a polygon, a convex polygon VWXYZ ....... with n sides (where n is the total sides)

To prove V + W + Y + Z ----(2n - 4) right angles.




Example 1

What is the sum of the interior angles of a duodecagon polygon?




Solution


A dodecagon polygon has 12 sides ; n = 12


Sum of the interior angles = (2n - 4)right angle



= ( 2 x 12 - 4) x 90 degree


= (24 - 4) x 90

= 20 x 90

= 1800 degree






Based on the explanation about any angle less tha 180, such solution must be 90.That means any angle less that 90 shuld go with formula


(2n - 4) x 90




Example 2

If the interior angles of a quadrilateral are x , (2x + 5) , (x + 15) and (2x + 10) degrees, find x.


Solution 


We all know that a type of angle called quadrilateral has 4 sides (rectangle and square).

x + (2x + 5) + (x + 15)  + (2x + 10) = 360 degree


x + 2x + 5 + x + 15  + 2x + 10 = 360

6x + 30 = 360

Subtract 30 fro both sides.


6x + 30 - 30 = 360 - 30


6x = 330

Divide both sides by 6 not (6x)



   6x      330
------- = ------ 
   6        6



x = 55 degree










Example 3


One of the angles of an octagon is 156 degree.Find the values of the other angles, if they are equal.



Solution


An octagon has 8 sides.Let each of the remaining 7 angles be x.



7x + 156 = (2n - 6) right angles.


        = (2 x 8 - 4) x 90

        = (16 - 4)  x 90

        = 12 x 90 

        = 1080


7x + 156 = 1080


Subtract 156 from both sides


7x + 156 - 156 = 1080 - 156


7x = 924


Divide both sides by 7( not 7x).


  7x        924
------- = ------- 
  7         7





x = 132 degree







More eamples


The sum of the interior angles of a polygon of n sides is 900 degree.Find the value of n.


L et n sides is a ply gon with 7 sides.


Heptagon = 7


=(2n - 4) right angles


= ( 2 x 7 - 4) x 90


= ( 14 - 4) x 90


= 10 x 90

= 90






ACtivities 1


Calculate the sum of the following interior angles.

(a) 5- sides

(b) 15 - sides

(c)20 sides





ACtivities 2

(a) A regular polygon has angle of size 150 each. many sides does the polygon have?

(b) If the exterior angles of a pentagon are x, (x + 5),(x + 10), (x + 15) and (x + 20), find x




























































































































































































Post a Comment

0 Comments